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Abstract

The reconstruction of force is considered by means of indirect measurements. This necessitates taking
measurements from the impacted structure and then to deconvolve those signals from the impulse response
function. More precisely, the purpose of the work described here is to analyze a deconvolution technique
and to solve the problems which occur. Thus, it is highlighted that the associated deconvolution problem
depends on the location of the measurement points: is it possible or not to reconstruct the impact force
versus the location of this point. Numerical predictions are compared and validated with experiment. But,
the deconvolution is a well-known ill-posed problem: the results are often unstable. This is why it is
necessary to regularize the problem, which consists of adding a condition to the solution which does not
appear in the initial problem. Some regularization methods are presented. Nevertheless, they necessitate the
determination of a parameter; the difficulty is to calculate an appropriate value of this regularization
parameter. The methods are successfully used to recover an experimental force.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The determination of impact load history is necessary to design a structure. This step in the
design process is often critical: it is not always possible to instrument the impactor (impact of a
bird on a windscreen, for example). This means that the dynamic force must be recovered by the
help of indirect measurements: the problem is then to deconvolve two signals.
Those investigations have interested many researchers. Doyle wrote several papers in which he

has described a frequency domain method [1–3]. Gao and Randall [4] use a cepstral analysis: this
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can be viewed as an extension of a frequency technique in which the division is replaced by
subtraction; this procedure is more and more used in the study of periodic excitations acting on
systems. A large time window must be used, when the frequency domain deconvolution is used:
this is a global method which is not limited to the elapse of the waves propagation time. That is a
great disadvantage when a few components of the force must be recovered (early time problems).
So, time domain deconvolution is then useful. Chang and Sun [5], Yen and Wu [6,7] for example,
have preferred to work in the time domain. The method consists of recording a response SðM; tÞ
at M; which is often a strain; then, to recover the load FðI ; tÞ induced by an impact at I ; by solving
the following integral equation:

SðM; tÞ ¼
Z t

0

GðI ;M; t � tÞF ðI ; tÞ dt ¼ GðI ;M; tÞ%F ðI ; tÞ; ð1Þ

where GðI ;M; tÞ is the impulse response function between the points M and I ; % is the
convolution product. Then, the problem to solve is a deconvolution one. It is obvious that the
transfer function identification must be done first: which is another problem.
To solve Eq. (1), a discrete problem must be generated by sampling the convolution integral

equation (1). This leads to a system of algebraic equations:

½S� ¼ ½G�½F�; ð2Þ

where ½G� is the transfer matrix:

½G� ¼ Dt

GðI ;M;DtÞ 0 0

GðI ;M; 2DtÞ GðI ;M;DtÞ &

GðI ;M; 3DtÞ GðI ;M; 2DtÞ & &

^ ^ & & 0

GðI ;M; nDtÞ GðI ;M; ðn � 1ÞDtÞ y y GðI ;M;DtÞ

0
BBBBBB@

1
CCCCCCA

½S� ¼ ½SðM;DtÞ;y;SðM; nDtÞ�t;

½F� ¼ ½F ðI ; 0Þ;y;F ðI ; ðn � 1ÞDtÞ�t;

fe ¼ 1=Dt is the sampling frequency:

A deconvolution is an inverse problem and is a well-known ill-posed problem: the ½G� matrix is
ill-conditioned and consequently [8]:

* the system defined by Eq. (2) can be numerically insolvable,
* if the solution of system (2) exists, it may be unstable with regard to a small disturbance, such as

a noise.

Those difficulties are often hidden in the literature on dynamic reconstruction of loads, even if its
presence is implicit. In this article, one will say that a force is recoverable if it is not necessary to
modify the initial problem to obtain an acceptable solution: a direct solving of Eq. (2) is sufficient.
No article on deconvolution in dynamics deals with the parameters which influence the ill-

conditioning and then the reconstruction of force. In this paper, the first purpose is to analyze the
deconvolution problem. To do that, some experiments are performed on a target which can be
modelled analytically. First, the analytical modelling excited with numerical force is used: thus,
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the experimental noise is eliminated. Then the real device is used. Particularly, the effect of the
measurement points location is highlighted.
The sensitivity of the response with regard to noise leads one to modify the initial problem to

obtain a robust solution: this procedure is called regularization. Some articles [7,9] implicitly deal
with the regularization by introducing a supplementary condition: the force must stay positive.
This method is an interesting regularization one but is limited to the reconstruction of impact
forces. In this article some more general regularization techniques are displayed. Those methods
are mathematically well-proved and widely used in different fields of applied science [8]. The
Tikhonov regularization [10,11], and the truncation regularization [12], which are particular cases
of filter factor regularization method, are presented. The second main purpose of the article is to
highlight the difficulty to determine the regularization parameter, even if some methods exist to
calculate it.

2. The system studied

2.1. Experimental set-up

Experiments using a Al-5054 aluminium plate as a target are performed. This one is circular
(radius a ¼ 205 mm; thickness h ¼ 5 mm), clamped, isotropic (Young’s modulus, the Poisson
ratio and density are E ¼ 70 GPa; n ¼ 0:3 and r ¼ 2700 kg=m3; respectively). The force is
applied at I ; the centre of the plate; the dynamic response is recorded by two strain gages fixed at
1 cm ðM1Þ and 5 cm ðM5Þ from the centre of the plate. The test set-up has been chosen in order to
obtain an analytical expression of the transverse displacement.
Data acquisition and analysis are made with a DSPT analyzer (Siglab 20-42). Experimental

frequency response functions (FRF) are obtained by impulse testing performed with an impact
hammer (B&K 8202).

2.2. Analytical modelling

The system is modelled by an elastic, circular embedded ‘‘Kirchhoff’’ plate with uniform
characteristics, subjected to axisymmetrical load acting on its centre. The equation of motion can
be expressed in the following form [13]:

DDDwðr; tÞ þ rh .wðr; tÞ ¼ qðr; tÞ; ð3Þ

where wðr; tÞ is the transverse displacement, qðr; tÞ ¼ f ðtÞdðrÞ the applied loading at the centre of
the plate, D ¼ Eh3=12ð1� n2Þ; and D ¼ ð1=rÞd=drðr d=drÞ:
It is well-known [13] that the mode shapes of such a plate under axisymmetrical loading are:

fnðrÞ ¼ J0ðlnrÞ �
J0ðlnaÞ
I0ðlnaÞ

I0ðlnrÞ;

where Jp and Ip are p order first kind and first kind modified Bessel’s functions, respectively; ln is
such as l4n ¼ o2

nrh=D and is a solution of the following characteristic equation:

J0ðlnaÞI1ðlnaÞ þ I0ðlnaÞJ1ðlnaÞ ¼ 0: ð4Þ
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By applying the modal superposition, the displacement wðr; tÞ can be expressed in the following
form:

wðr; tÞ ¼
X

n

1

Mnoan

Z t

0

fnð0ÞfnðrÞf ðtÞ sinðoanðt � tÞÞ expð�xnonðt � tÞÞ dt; ð5Þ

where Mn; on; oan and xn are modal mass, circular eigenfrequency, damped circular

eigenfrequency ðoan ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q
Þ and the damping ratio for the eigenmode n:

In this study, the strains in the circumferential direction et; on the surface of the plate ðz ¼ h=2Þ
are recorded:

etðr; h=2; tÞ ¼ �
h

2r

dw

dr
ðtÞ:

Then the modal expansion of the impulse response function between the centre of the plate ðr ¼ 0Þ
and a measurement point located at r can be deduced:

Gtðr; 0; tÞ ¼ �
h

2r

X
n

f0
nðrÞfnð0Þ sinðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q
tÞ expð�xnontÞ

Mnon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q : ð6Þ

2.3. Excitations

Two kinds of excitation will be used:

* Numerical force: A numerical impact force represented in Fig. 1 is built. It is then pos-
sible to find the response at any position of the plate by applying Eq. (1), i.e., a forward
problem. It is worth noting that the numerical force is well-known and not spoiled by any
noise.

* Actual force: A force obtained with an impact hammer is recorded. Simultaneously, the strains
induced by the solicitation are recorded (Fig. 2).

3. Analysis of the deconvolution problem

3.1. Recoverable force?

In this section, the ability to solve Eq. (2) is studied. Then, a forward problem is carried out:
both matrices ½Gt1� and ½Gt5� are multiplied by the numerical force ½F � and then the strains ½et1� and
½et5� are obtained. The problem is: can an inverse problem be performed, i.e., can the force ½F� be
recovered? The response is positive if the solution of the linear algebraic system (2) is exactly the
initial force: the problem is then to determine if a small disturbance leads to a small variation of
the solution or not.
Indeed, the whole simulations show that the conclusion is a function of the location of the

measurement point. Thus, if the results can perfectly be recovered with the strains measured at
1 cm from the centre (Fig. 1), it is not the same with the point located at 5 cm: the solution is
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Fig. 1. Numerical impact force—Recovered force—measurement point at 1 cm:
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divergent. Then, it seems that the nature of the deconvolution problem is not the same in both
cases.

3.2. Nature of the deconvolution problem

A useful tool will help one to prove that the nature of the deconvolution problem depends on
the point measurement location: the singular value decomposition (SVD). The SVD of a ½G�;
ðm; nÞ; mXn; real matrix is defined as follows:

½G� ¼ ½U�½R�½V�t ¼
Xn

i¼1

uisiv
t
i ; ð7Þ

where ½U� is the matrix of left singular vectors, ½V� is the matrix of right singular vectors and ½R�
diagonal matrix whose diagonal elements are the singular values of G.
This decomposition is particularly interesting because it gives a formulation of the solution of

problem (2):

½F� ¼
Xn

i¼1

uti ½S�
si

vi: ð8Þ

Then the ability to solve system (2) depends on the singular values and vectors of the matrix ½G�:
Moreover, the singular values will help one to determine the nature of the problems. Indeed, if a

discrete equation leads to ill-conditioned matrices, there exists different kinds of ill-conditioning
[12]: the problem can be solely ill-posed or can be ill-posed and rank-deficient.
The nature of an ill-conditioning is identified with the singular values well:

* the singular values decay gradually to zero with no particular gap: the problem is only ill-posed,
* the singular values decay gradually to zero and there is a well-determined gap between two

singular values: the problem is ill-posed and ‘‘rank-deficient’’. Moreover, the SVD allows one
to identify the pseudo-rank of the matrix: it is the number of singular values which appear
before the gap.

In Fig. 3, the singular values of the matrices ½Gt1� and ½Gt5� are plotted. This figure shows that
the nature of the problem changes with the position of the measurement point:

* the inverse problem posed with ½Gt1� is solely ill-posed,
* the inverse problem posed with ½Gt5� is ill-posed and rank-deficient.

Expression (8) and Fig. 3 explain why it is impossible to recover the force with the matrix ½Gt5�:
the smallest singular value ð10�24Þ is below the computer precision ð10�16Þ; therefore the results
are dominated by rounding errors and it is impossible to recover the force; that is not the case
with ½Gt1�:

Experimental verification: The previous conclusions are made from some numerical signals and
modelling and it would be interesting to validate them from experimental data. So, the
experimental frequency response functions are determined; by inverse Fourier transform, the
impulse response function are obtained and finally the transfer matrices ½Gt1� and ½Gt5� are
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performed by sampling. To test if it is possible to reconstruct the impact force, the signals
previously described are used (Fig. 2).
Then, the discrete convolution problem (2) is solved. The solution allows one to conclude if the

impact force is recoverable: Fig. 4 shows that only the measurements at 1 cm allow the
reconstruction, according to the numerical results. This validates the influence of the measurement
point location.
Moreover, the SVD proves that the problem is rank-deficient and very ill-conditioned if the

measurement point located at 5 cm is used (Fig. 5).

3.3. Solution existence of a deconvolution problem

A lower triangular matrix ½G� is involved in the discrete convolution problem (2)

½S� ¼ ½G�½F�: ð9Þ

Then, the force can be recovered sequentially by a direct solution. But, it is not so simple because
simultaneity is involved Eq. (2). In practice, there is not simultaneity between the force and its
effect at any point of the structure: that is due to the elapse of the propagation time of the waves.
Then, some of the first rows of ½G� are filled with zeros: the problem is rank-deficient and then
under-determined.
Fig. 6 effectively shows the delay between the transient signals measured at 1 and 5 cm: In that

example, the delay is td ¼ 132 ms and the time sampling is Dt ¼ 39 ms: Then, the index delay is
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nd ¼ td=DtB3: As the signals are recorded at 1 and 5 cm from the point of excitation, there is an
almost simultaneity between the force and the signal recorded at 1 cm; and a delay ð4	 DtÞ
between the force and the signal recorded at 5 cm: This can explain why only the latter problem is
rank-deficient.
It may be interesting to know if the force becomes recoverable by keeping only the singular

values before the gap in expression (8): the SVD is then truncated. Indeed, if the solution is
not divergent, some disturbing oscillations appear in the solution. This is due to a propriety
of the singular vectors: they present more and more oscillations when the index i increases,
exactly as if those vectors represent the high frequency components of the solution [12]. Then, if
the coefficients of the last retained vectors are not sufficiently small, those oscillations are
highlighted. In the following, it will be seen that it is possible to obtain a good solution by a
truncation of the SVD: the problem is then to determine the ‘‘good’’ rank of the truncation. Then,
one substitutes a well-posed problem closed to the rank-deficient problem: this technique is a
regularization one.
Moreover, the solution depends also on n; the number of time steps: if this latter is sufficiently

small, the singular values are not below the computer precision. Thus, the Table 1 shows that
the smallest singular values are not less that the computer precision when the number of time
step is 200: in that case, the force is recoverable. But, as shown in Table 1, if the size of the
problem increases, i.e., if the total number of time steps increases (up to 800 for example), the
solution becomes divergent: the lowest singular value depends strongly on the number of time
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steps for the measurement at 5 cm: Then, if a small sampling period is required for a forward
problem to obtain some accurate results, this could induce an impossibility to solve the inverse
solution.

3.4. Solution stability of a deconvolution problem

Between a numerical simulation and an experimental test, there is a great difference:
in the latter case, the impulse response function and the output signals are noisy. Then,
even if a non-divergent solution of the deconvolution problem can be obtained, it is important to
test its stability, because the problem is ill-conditioned. More particularly, for a given noise
level, when the sampling period decreases, the solution is spoiled by a severe oscillation.
Indeed, the errors are amplified and propagate when an ill-conditioned system is solved:
that creates a parasitical oscillation which becomes larger when the number of discrete
time steps increases. In fact, the convolution of a force by an transfer function has a smoothing
effect [8,14]. Then, a rather important oscillation of the force can induce a small effect on the
result.
To test the influence of the noise, modelled by a zero-mean gaussian random process:

* a deterministic forward problem is performed: a strain is obtained by convolving the numerical
force and the analytical impulse response function,

* a signal is disturb; it can be:
– either the output response (noise measurement): the standard deviation is 1.5% of the

maximum of the measured strains,
– or the impulse response (modelling noise): the standard deviation is 1% of the maximum of

the impulse response function.
* an inverse problem is performed by directly solving the algebraic system (2). A measure

of the discrepancy D between the both exact and noisy force is defined by the following
relation:

D ¼
jjSignalnoisy � Signalexactjj

jjSignalexactjj
: ð10Þ

The term ‘‘exact’’ is applied for the signals without any noise.
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Table 1

Some singular values of different FRF

Number of time steps Gr5 Gt1

Lowest Greatest Lowest Greatest

singular value singular value singular value singular value

200 2:8	 10�7 4:3	 10�6 2:8	 10�7 2:1	 10�6

800 10�24 10�15 3:5	 10�8 6:4	 10�6
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Previously, it has been shown that it is possible to recover the force if a measurement point at
1 cm is used: in this subsection, all the calculations are performed with the response recorded at
this point.
The results are function of the nature of the noise:

* Noisy response: In Fig. 7, the recovered force is plotted when the noisy strains are used. The
error D calculated with formula (10) is 5% for the output response; this error induces an error
of 30% on the solution. Then, even if the measurement at 1 cm allows to recover the force with
perfect data, as soon as there exists some noise, it is not possible to obtain a correct force: the
solution is unstable.

* Noisy impulse response function: Contrary to the previous results, the influence of the noise on
the structure characteristics is weak: 5% in error for impulse response function produces an 5%
in error for the recovered force (Fig. 8).

In practice, the measured signal is always a noisy one. Then, one cannot accept the solution
obtained by the direct solution of the discrete deconvolution equation. A regularization technique
must also be used to stabilize the force. This technique imposes a smoothness on the solution: it
forces neighbouring values to be almost similar.

Comment: The previous simulations highlight that the solution of an inverse problem is not
acceptable by directly solving Eq. (2) as soon as the output response is noisy. It is worth noting
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that this conclusion is not the same as when a noisy impulse response is used. This explains why,
in the literature, the quality of the results does not depend on the origin of the transfer matrix: it
can be obtain either by modelling [6,9,15,16], or experiment [7,16].

4. Regularization

The main conclusion of the previous analysis is that the ‘‘naive’’ solving of the equation (2)
never gives a satisfactory solution. Then, a regularization technique must be used; it allows one to:

* always recover the force, whatever the measurement position,
* obtain a stable solution with regard to the noise.

The regularization consists of including additional information to the initial problem. This
additional condition can be:

* Physical: For example, when an impact force must be recovered, the solution is forced to be
non-negative,

* A compromise: It might be a solution which minimizes the residual norm of the discrete
convolution equation (2) and a smoothness condition on the solution (norm of the force or of
its derivatives not too high, etc.).
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4.1. Non-negativity condition

To recover an impact force, the regularization technique commonly used consists of adding a
non-negativity condition. This one is particularly well-adapted because it is based on a physical
consideration: there is no compromise. The deconvolution problem to solve is then:

min
F

jj½G�½F� � ½S�jj2 subject to ½F�X0: ð11Þ

This can be solve by the conjugate gradient method [17].
As shown before, the force is not recoverable if the point at 5 cm is used. If the non-negativity

condition is applied, the exact force is obtained whatever the measurement point used. This
conclusion is also valid when the strains are noisy (Fig. 9). Then, the regularization strongly
stabilizes the solution but this condition of positivity cannot always be used: this is why the
regularization with a compromise is presented to reconstruct any force in the following
subsection.

4.2. Regularization with compromise

This method incorporates further information about the desired solution in order to stabilize
the problem, which is not based on physical consideration. Then a regularized problem consists in
finding a solution ½F� such as

min
F

jj½G�½F� � ½S�jj2 subject to further conditions: ð12Þ

For the study, the knowledge and the solution of that regularized problem, it is interesting to
use the generalized singular value decomposition (GSVD). This is why this tool is defined first, to
use it widely afterwards.
The described methods will be illustrated with the numerical noisy signals used in the previous

section to estimate the force plotted Fig. 1.

4.2.1. Generalized singular value decomposition GSVD [12]
Briefly, the GSVD of the real matrix pair (½G�; ½L�Þ; (½G�ARm	n and ½L�ARp	n; mXnXp) is:

½G� ¼ ½U�
½R� 0

0 In�p:

 !
½X��1 ¼ ½U�½D�½X��1;

½L� ¼ ½V�ð½M�; 0Þ½X��1;

where ½U� is the ðu1;y; unÞ is an m 	 n matrix which has its columns orthonormal; ½V � the
ðv1;y; vpÞ is an p 	 p matrix which has its columns orthonormal; ½X� a non-singular n 	 n matrix;
½R� ¼ diagðs1;y; spÞ where 1XspX?Xs1X0; ½D� ¼ diagðd1;y; dnÞ where di ¼ si if ipp and

otherwise di ¼ 1; ½M� ¼ diagðm1;y;mpÞ where 1Xm1X?XmpX0; m2i þ s2i ¼ 1; gi ¼ si=mi are the

generalized singular values, In�p the identity matrix of Rðn�pÞ	ðn�pÞ:
The solution in a least square sense of problem (2), can be obtain with the help of the GSVD:

½F� ¼
Xp

i¼1

uti ½S�
si

xi þ
Xn

i¼pþ1

uti ½S�xi ¼ ½X�½D��1½U�t½S�: ð13Þ
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Remark 1. This decomposition looks like the SVD. This is why some properties are similar
to those of the SVD described previously, even if the ordering of the singular values and
vectors is reversed. Thus, for ill-posed problem, the following features of the GSVD is usually
found [12]:

* gi and si decay to zero when i tends to 1,
* the singular ui; vi and xi are more and more oscillating as the corresponding gi decreases: they

can be seen like some high frequency components of the signal.

Remark 2. The GSVD of ð½G�; InÞ and the SVD of ½G� are identical except for the reverse ordering.
The GSVD allows one to add more general conditions than the SVD: that is why it is so
interesting to use the GSVD.

4.2.2. Filter factors
As it has be seen with the SVD, the ill-posedness is highlighted with the GSVD. Indeed, the

previous Remark 1 and expression (13) indicate that the low index terms made the problem ill-
conditioned:

* when i tends to 1, 1=si tends to infinity: if uti ½S� does not tend to zero faster than si; the solution
is unstable;
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* when i tends to 1, xi is oscillating: if the term uti ½S�=si does not tend to zero so quickly, the
solution becomes strongly oscillating; this is why the high frequency components often pose a
problem.

Then, the idea [12] is to modify the GSVD with the help of some parameters fi called the filter
factors:

½F� ¼
Xp

i¼1

fi

uti ½S�
si

xi þ
Xn

i¼pþ1

utiSxi ¼ ½X �½F�½D��1½U�t½S� ¼ ½Gx�½S�; ð14Þ

where ½F� is a diagonal matrix: ½F� ¼ diagðf1;y; fpÞ and 8i ¼ 1;y; n � p fpþi ¼ 1; and ½Gx� ¼
½X�½F�½D��1½U�t is a regularized pseudo-inverse of ½G�:
The filter factors goal is to minimize the influence of the low index terms: many expressions are

available. Subsequently, two different filter factors will be presented, which correspond to two
regularization techniques widely used:

* Tikhonov regularization,
* the truncation of the GSVD.

4.2.3. Tikhonov regularization [10]
The Tikhonov regularization consists in defining a smoothing norm Oð½F�Þ and finding a trade-

off between the residual norm of Eq. (2) and the smoothing norm [10]. The regularized problem is
then

min
F

fjj½G�½F� � ½S�jj2g subjected to min
F

fOð½F�Þg: ð15Þ

Typically, Oð½F�Þ is of the form

Oð½F�Þ ¼ jj½L�½F�jj2; ð16Þ

where ½L� is often the identity operator ðIÞ; the first ðD1Þ or second ðD2Þ derivative operator,...
Oð½F�Þ is a quadratic form whose matrix is a positive definite one: problem (15) is then a well-posed
one and leads to a unique solution [14].
Tikhonov [10] has shown that this latter problem is equivalent to the following one:

min
F

fjj½G�½F� � ½S�jj2 þ aOð½F�Þg and Oð½F�Þ ¼ jj½L�½F�jj2; ð17Þ

where a is the regularization parameter. An important problem is the choice of a [12,18]: its value
allows one to single out a minimum of the residual norm of Eq. (2) (low value) or a minimum of
the smoothing norm (great value).
In fact, it can be shown that a solution of (17) is given by Eq. (14) with the following filter

factors:

8ipp fi ¼
g2i

ðg2i þ a2Þ
if ½L�aIn; ð18Þ

8ipp fi ¼
s2i

ðs2i þ a2Þ
if ½L� ¼ In: ð19Þ
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The latter expressions show that a is a really critical parameter: if it is too low, the problem stays
unstable (its role is negligible); if it is too high the ‘‘high frequency’’ components are not taken
into account, the solution is too smooth.
Indeed, the objective of the Tikhonov regularization is to modified only the terms of the GSVD

which present a too small singular value.

Remark. To solve problem (15), the use of the GSVD is not the more efficient technique.
For example, Granger [19,20] proposes a method to solve efficiently this problem. But, the
GSVD allows one to understand the role of a and the principle of the Tikhonov regulari-
zation.

4.2.4. The truncation
Solution (13) shows that the problem of convergence is due to the low index terms of the

decomposition. The truncation consists of eliminating the first terms up to the rank k: This index
k is, in that method, the regularization parameter: it plays the same role as a in the previous
method.
The index k must be chosen to eliminate:

* the small singular values,
* the too oscillating singular vectors.

The solution can again be written like expression (14), with the following filter factors:

fi ¼ 0 if ipk; ð20Þ

¼ 1 otherwise: ð21Þ

The truncation can be interpret as a traditional signal processing: one eliminates some high
frequency components of the signal, which are the low index vectors xi:

4.2.5. Regularization parameter

The filter factors depend on a regularization parameter: the regularization quality is direct
function of an adequate choice of this parameter. Unfortunately, these does not exist a universal
method giving a good value for a or k:
The two following methods are often used, even if some others exist [10,19]:

* the L-curve,
* the generalized cross-validation (GCV).

L-curve criterion: To obtain the L-curve, one plots on a log–log scale the smoothing
norm jj½L�½F�jj2 versus the residual norm of Eq. (1), jj½G�½F� � ½S�jj2: then, this is a curve
parametrized by the regularization parameter (Fig. 10) which looks like an ‘‘L’’: it presents an
horizontal and a vertical branchs linked at the ‘‘corner’’ of the curve. It illustrates the compromise
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between fitting the data well and to sufficiently regularize the solution. Thus, if the value of the
parameter is:

* ‘‘small’’: the quality of the fit is good but the additional information is not take into account;
the solution obtained is an oscillating (under-smoothing) one (Fig. 11);

* ‘‘high’’: the a priori condition is used well, at the cost at the fit: the solution is over-smoothing
(Fig. 11).

The L-curve criterion indicates that the appropriate values are obtained for the points which are
located at the corner of the curve.

Generalized cross-validation (GCV): The GCV criterion is based on the fact that a good
parameter must predict the missing data well [12,21]. Its principle is:

* one determines Fa;j; the solution obtained when one uses the whole data except the j component
of ½S�; Fa;j is then the solution of the following problem:

min
F

Xn

i¼1; iaj

jSi � ðGFÞij
2 þ ajjFjj22

( )
; ð22Þ
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* one predicts the unused data Sj: Sj ¼ ðGFa;jÞj;
* the regularization parameter is the one which minimizes the predictive mean-square error;

Desbat [21] has shown that comes down to minimizing the G function (called GCV
function):

G ¼
jjGF� Sjj

jjIm �GGxjj
: ð23Þ

In Fig. 12, such functions GCV are plotted for the Tikhonov and truncation methods: the
recovered forces are then obtained (Fig. 13).

Comments: All the recovered forces are similar: in this example, all the criteria to determine the
regularization parameter and all the methods are good. Nevertheless, the parameters are not
exactly the same (see Table 2). Then, one can conclude that there exists a range of good values to
regularize the problem.
In the previous example, the whole criteria and methods allows one to reconstruct the force: this

is not always the case. Indeed, the aim of the following section is to highlight the difficulties and to
define which criteria must be used.
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4.3. Experimental forces reconstruction

The methods and the criteria are now tested with the experimental data. An impact force and
any force are recovered.

4.3.1. Experimental impact force
First, the L-curve (Fig. 14) is plotted. It is difficult to see the corner of this L-curve. So, as

proposed in Refs. [12,18], the corner is defined as the point on the parametric L-curve:

ðlogðjjGF� Sjj2Þ; logðjjLFjj2ÞÞ ¼ ðlogðzðaÞÞ; logðZðaÞÞÞ ¼ ð#zðaÞ; #ZðaÞÞ;

which has maximum curvature. The curvature kðaÞ is defined as usual by

kðaÞ ¼
ð#z0 #Z00 � #z00 #Z0Þ

ðð#z0Þ2 þ ð#Z0Þ2Þ3=2
¼ 2

zZ
Z0

ða2zZ0 þ 2azZþ a4ZZ0Þ

ðz2 þ a4Z2Þ3=2

with

Z0 ¼ �
4

a

Xn

i¼1

ð1� fiÞf 2
i

ðutiSÞ
2

s2i
:

The regularization parameter is then obtained: a ¼ 0:41:
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The GCV criterion is also tested, as shown in Fig. 15. For the Tikhonov method, the minimum
is obtained for a ¼ 0:034; but the GCV function is very flat in a large range of the parameter: then
it is not easy to choose a parameter.
For the truncation method, the parameter k ¼ 2 is obtained: only the singular vectors which

correspond to the singular values below the computer precision are eliminated; Fig. 16 shows that
some too ‘‘oscillating’’ singular vectors are not eliminated: the solution is not regularized enough.
This solution is frequently obtained, but it never corresponds to a good regularization parameter:
the other part of the curve must be examined. The following local minimum is then for k ¼ 48: the
result is then good.
In that case, 3 criteria give a good parameter (see Table 3). But, if the GCV function does not

give a good value, the problem is pointed out by the flatness of the curve near the minimum.
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Table 2

Regularization parameters—numerical signals

Tikhonov Truncation

L-curve 0.4810 125

GCV 0.3050 156
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4.3.2. Any experimental force
To test the regularization method for any force, the data shown in Fig. 17 is used.
The GCV criterion is applied for Tikhonov and truncation regularization (Fig. 18). The values

obtained allow one to recover the force well, as shown in Fig. 19.
The L-curve criterion is also applied (Fig. 20). But the corners do not indicate an optimal

parameter. In that case it is more interesting to use the ‘‘next’’ corner: it is the following local
maximum of the curvature. In fact, this latter point is a real compromise: the residual norm of
Eq. (2) ‘‘accepts’’ to increase; that was not the case with the point which has the maximum
curvature (Fig, 20). The recovered force is then as good as the parameters determined with the
GCV criterion, as shown in Fig. 19.
The Table 4 shows that both criteria give the same value for the regularization parameters, if

the ‘‘real’’ corner is not used.

4.3.3. Comments
Even if for the numerical simulations all the criteria are good to determine the regularization

parameter, in practice the following features must be emphasized:
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* For the truncation method: If the criteria indicate that a few of the terms must be eliminated, the
solution is never good: only the small singular values (i.e. lower than the computer precision)
are eliminated; the too oscillating terms again spoil the solution.

* For L-curve: A real compromise must be achieved: if a corner is reached without change in the
residual norm, the result is always under-regularized. The next corner gives a good value for the
regularization parameter.

* For the GCV: If the GCV function is too flat near the minimum, the value of the regularization
parameter is not reliable.

Then, the recommendation to regularize, is to use different criteria and to confront the
results.
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Table 3

Regularization parameters for impact force

Tikhonov Truncation

L-curve 0.41 73

GCV 0.034 48
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5. Conclusion

To recover an excitation by solving the algebraic system (2) is not so easy: the solution of a such
system, if there exists, is not stable. This study highlights the influence of the location of the
measurement point: this location modifies the condition number of the transfer matrix ½G� and the
nature of the problem. Moreover, the inverse problems are dominated by the rounding errors
when the system is rank-deficient.
But, even when the system is not rank-deficient, the solution is not stable: a small measurement

noise causes a severe oscillation of the solution; it is interesting to note that the results are
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Table 4

Regularization parameters for any force

Tikhonov Truncation

L-curve 0.9326 253

GCV 0.6834 268
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different if the disturbance is a modelling noise. This leads to regularize the initial problem to
stabilize the solution. This consists in adding conditions to the initial problem. Some of them may
be physical (non-negativity for an impact force, for example) and some others may be more
abstract (‘‘smoothness’’ of the solution for example). The regularization by truncation leads to
filter a signal by a low-pass filter. Then, this method would be efficient when a solution unstability
is due to high frequency components. Tikhonov regularization is more global: it takes effect of the
whole signal.
Those methods are more general, but involve the estimation of a regularization parameter: it is

difficult to find an appropriate value even if some criteria exist. In fact, different criteria must be
used: all the results obtained must be analyzed carefully and be confronted. It is worth noting that
this method allows one to recover any force.

References

[1] J.F. Doyle, Further developments in determining the dynamic contact law, Experimental Mechanics 24 (4) (1984)

265–270.

[2] J.F. Doyle, Experimentally determining the contact force during the transverse impact of an orthotropic plate,

Journal of Sound and Vibration 118 (3) (1987) 441–448.

[3] J.F. Doyle, Wave Propagation in Structures, Springer, Berlin, 1989.

[4] Y. Gao, R.B. Randall, Reconstruction of diesel engine cylinder pressure using a time domain smoothing technique,

Mechanical Systems and Signal Processing 13 (5) (1999) 709–722.

[5] C. Chang, C.T. Sun, Determining transverse impact force on a composite laminate by signal deconvolution,

Experimental Mechanics 29 (4) (1989) 414–419.

[6] C.-S. Yen, E. Wu, On the inverse problem of rectangular plates subjected to elastic impact. Part I: method

development and numerical verification, Journal of Applied Mechanics 62 (3) (1995) 692–698.

[7] C.-S. Yen, E. Wu, On the inverse problem of rectangular plates subjected to elastic impact. Part II: Experimental

verification and further applications, Journal of Applied Mechanics 62 (3) (1995) 699–705.

[8] H. Alison, Inverse unstable problems and some of their applications, Mathematical Scientist 4 (1979)

9–30.

[9] E. Wu, J.-C. Yeh, C.-S. Yen, Impact on composite laminated plates: an inverse method, International Journal of

Impact Engineering 15 (4) (1994) 417–433.

[10] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-posed Problems, Winston-Wiley, New York, 1977.

[11] B.A. Mair, Tikhonov regularization for finitely and infinitely smoothing operators, SIAM Journal of

Mathematical Analysis 25 (1) (1994) 135–147.

[12] P.C. Hansen, Rank-Deficient and Discrete Ill-posed Problems, SIAM, Philaphedia, PA, 1998.

[13] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, New York, 1975.

[14] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, Cambridge University Press,

Cambridge, 1992.

[15] Y. Qian, S.R. Swanson, A comparison of solution techniques for impact response of composite plates, Composite

Structures 14 (1990) 177–192.

[16] E. Wu, T.-D. Tsai, C.-S. Yen, Two methods for determining impact-force history on elastic plates, Experimental

Mechanics 35 (1992) 11–18.

[17] M.A. Branch, A. Grace, Matlab. Optimization Toolbox, The Math Works Inc., Natick, MA, 1996.

[18] T. Reginska, A regularization parameter in discrete ill-posed problems, SIAM Journal of Scientific Computing 17

(3) (1996) 740–749.

[19] S. Granger, L. Perotin, An inverse method for the identification of a distributed random excitation acting on a

vibrating structure. Part I: Theory, Mechanical Systems and Signal Processing 13 (1) (1999) 53–65.

ARTICLE IN PRESS

E. Jacquelin et al. / Journal of Sound and Vibration 265 (2003) 81–107106



[20] L. Perotin, S. Granger, An inverse method for the identification of a distributed random excitation acting on a

vibrating structure. Part II: Flox-induced vibration application, Mechanical Systems and Signal Processing 13 (1)

(1999) 67–81.

[21] L. Desbat, Crit"eres de Choix de Param"etres de R!egularisation: Application "a la D!econvolution, Ph.D. Thesis,

Universit!e Joseph Fourier, Grenoble, 1990.

ARTICLE IN PRESS

E. Jacquelin et al. / Journal of Sound and Vibration 265 (2003) 81–107 107


	Force reconstruction: analysis and regularization of a deconvolution problem
	Introduction
	The system studied
	Experimental set-up
	Analytical modelling
	Excitations

	Analysis of the deconvolution problem
	Recoverable force?
	Nature of the deconvolution problem
	Solution existence of a deconvolution problem
	Solution stability of a deconvolution problem

	Regularization
	Non-negativity condition
	Regularization with compromise
	Generalized singular value decomposition GSVD [12]
	Filter factors
	Tikhonov regularization [10]
	The truncation
	Regularization parameter

	Experimental forces reconstruction
	Experimental impact force
	Any experimental force
	Comments


	Conclusion
	References


